Fractional Hamiltonian analysis of higher order derivatives systems
نویسندگان
چکیده
منابع مشابه
Extension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems
The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...
متن کاملStability analysis of fractional-order nonlinear Systems via Lyapunov method
In this paper, we study stability of fractional-order nonlinear dynamic systems by means of Lyapunov method. To examine the obtained results, we employe the developed techniques on test examples.
متن کاملLagrangian and Hamiltonian Mechanics with Fractional Derivatives
In this paper we discuss the fractional extention of classical Lagrangian and Hamiltonian mechanics. We give a view of the mathematical tools associated with fractional calculus as well as a description of some applications.
متن کاملThe Hamiltonian Formulation of Higher Order Dynamical Systems
Using Dirac’s approach to constrained dynamics, the Hamiltonian formulation of regular higher order Lagrangians is developed. The conventional description of such systems due to Ostrogradsky is recovered. However, unlike the latter, the present analysis yields in a transparent manner the local structure of the associated phase space and its local sympletic geometry, and is of direct application...
متن کاملstability analysis of fractional-order nonlinear systems via lyapunov method
in this paper, we study stability of fractional-order nonlinear dynamic systems by means of lyapunov method. to examine the obtained results, we employe the developed techniques on test examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2006
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.2356797